Cargando…

Biophysical characterization data of the artificial protein Octarellin V.1 and binding test with its X-ray helpers

The artificial protein Octarellin V.1 (http://dx.doi.org/10.1016/j.jsb.2016.05.004[1]) was obtained through a direct evolution process over the de novo designed Octarellin V (http://dx.doi.org/10.1016/S0022-2836(02)01206-8[2]). The protein has been characterized by circular dichroism and fluorescenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Figueroa, Maximiliano, Vandenameele, Julie, Goormaghtigh, Erik, Valerio-Lepiniec, Marie, Minard, Philippe, Matagne, André, Van de Weerdt, Cécile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982917/
https://www.ncbi.nlm.nih.gov/pubmed/27547801
http://dx.doi.org/10.1016/j.dib.2016.07.036
Descripción
Sumario:The artificial protein Octarellin V.1 (http://dx.doi.org/10.1016/j.jsb.2016.05.004[1]) was obtained through a direct evolution process over the de novo designed Octarellin V (http://dx.doi.org/10.1016/S0022-2836(02)01206-8[2]). The protein has been characterized by circular dichroism and fluorescence techniques, in order to obtain data related to its thermo and chemical stability. Moreover, the data for the secondary structure content studied by circular dichroism and infra red techniques is reported for the Octarellin V and V.1. Two crystallization helpers, nanobodies (http://dx.doi.org/10.1038/nprot.2014.039[3]) and αRep (http://dx.doi.org/10.1016/j.jmb.2010.09.048[4]), have been used to create stable complexes. Here we present the data obtained of the binding characterization of the Octarellin V.1 with the crystallization helpers by isothermal titration calorimetry.