Cargando…

Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection

This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with DME versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irrever...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemaître, Guillaume, Rastgoo, Mojdeh, Massich, Joan, Cheung, Carol Y., Wong, Tien Y., Lamoureux, Ecosse, Milea, Dan, Mériaudeau, Fabrice, Sidibé, Désiré
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983398/
https://www.ncbi.nlm.nih.gov/pubmed/27555965
http://dx.doi.org/10.1155/2016/3298606
_version_ 1782447904656457728
author Lemaître, Guillaume
Rastgoo, Mojdeh
Massich, Joan
Cheung, Carol Y.
Wong, Tien Y.
Lamoureux, Ecosse
Milea, Dan
Mériaudeau, Fabrice
Sidibé, Désiré
author_facet Lemaître, Guillaume
Rastgoo, Mojdeh
Massich, Joan
Cheung, Carol Y.
Wong, Tien Y.
Lamoureux, Ecosse
Milea, Dan
Mériaudeau, Fabrice
Sidibé, Désiré
author_sort Lemaître, Guillaume
collection PubMed
description This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with DME versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various preprocessing steps in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and nonlinear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and a Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of preprocessing are inconsistent with different classifiers and feature configurations.
format Online
Article
Text
id pubmed-4983398
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-49833982016-08-23 Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection Lemaître, Guillaume Rastgoo, Mojdeh Massich, Joan Cheung, Carol Y. Wong, Tien Y. Lamoureux, Ecosse Milea, Dan Mériaudeau, Fabrice Sidibé, Désiré J Ophthalmol Research Article This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with DME versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various preprocessing steps in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and nonlinear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and a Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of preprocessing are inconsistent with different classifiers and feature configurations. Hindawi Publishing Corporation 2016 2016-07-31 /pmc/articles/PMC4983398/ /pubmed/27555965 http://dx.doi.org/10.1155/2016/3298606 Text en Copyright © 2016 Guillaume Lemaître et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lemaître, Guillaume
Rastgoo, Mojdeh
Massich, Joan
Cheung, Carol Y.
Wong, Tien Y.
Lamoureux, Ecosse
Milea, Dan
Mériaudeau, Fabrice
Sidibé, Désiré
Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title_full Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title_fullStr Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title_full_unstemmed Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title_short Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection
title_sort classification of sd-oct volumes using local binary patterns: experimental validation for dme detection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983398/
https://www.ncbi.nlm.nih.gov/pubmed/27555965
http://dx.doi.org/10.1155/2016/3298606
work_keys_str_mv AT lemaitreguillaume classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT rastgoomojdeh classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT massichjoan classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT cheungcaroly classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT wongtieny classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT lamoureuxecosse classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT mileadan classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT meriaudeaufabrice classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection
AT sidibedesire classificationofsdoctvolumesusinglocalbinarypatternsexperimentalvalidationfordmedetection