Cargando…

The expanding regulatory network of STING-mediated signaling

The identification and characterization of DNA-sensing pathways has been a subject of intensive investigation for the last decade. This interest, in part, is supported by the fact that the main outcome of DNA-responses is production of type I interferon (IFN-I), which, if produced in excessive amoun...

Descripción completa

Detalles Bibliográficos
Autores principales: Surpris, Guy, Poltorak, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983512/
https://www.ncbi.nlm.nih.gov/pubmed/27414485
http://dx.doi.org/10.1016/j.mib.2016.05.014
Descripción
Sumario:The identification and characterization of DNA-sensing pathways has been a subject of intensive investigation for the last decade. This interest, in part, is supported by the fact that the main outcome of DNA-responses is production of type I interferon (IFN-I), which, if produced in excessive amounts, leads to various pathologies. STING (stimulator of interferon genes) is positioned in the center of these responses and is activated either via direct sensing of second messengers or via interaction with upstream sensors of dsDNA. STING mediates responses to pathogens as well as host-derived DNA and is, therefore, linked to various autoimmune diseases, cancer predisposition and ageing. Recent mouse models of DNA damage showed the adaptor STING to be crucial for heightened resting levels of IFN-I. In this review, we will focus on recent advances in understanding the regulation of STING-signaling and identification of its novel components.