Cargando…
What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studie...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983604/ https://www.ncbi.nlm.nih.gov/pubmed/27547367 http://dx.doi.org/10.1002/ece3.2301 |
_version_ | 1782447923754172416 |
---|---|
author | Kozak, Kenneth H. Wiens, John J. |
author_facet | Kozak, Kenneth H. Wiens, John J. |
author_sort | Kozak, Kenneth H. |
collection | PubMed |
description | A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns. |
format | Online Article Text |
id | pubmed-4983604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49836042016-08-19 What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders Kozak, Kenneth H. Wiens, John J. Ecol Evol Original Research A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns. John Wiley and Sons Inc. 2016-07-26 /pmc/articles/PMC4983604/ /pubmed/27547367 http://dx.doi.org/10.1002/ece3.2301 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Kozak, Kenneth H. Wiens, John J. What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title | What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title_full | What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title_fullStr | What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title_full_unstemmed | What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title_short | What explains patterns of species richness? The relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
title_sort | what explains patterns of species richness? the relative importance of climatic‐niche evolution, morphological evolution, and ecological limits in salamanders |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983604/ https://www.ncbi.nlm.nih.gov/pubmed/27547367 http://dx.doi.org/10.1002/ece3.2301 |
work_keys_str_mv | AT kozakkennethh whatexplainspatternsofspeciesrichnesstherelativeimportanceofclimaticnicheevolutionmorphologicalevolutionandecologicallimitsinsalamanders AT wiensjohnj whatexplainspatternsofspeciesrichnesstherelativeimportanceofclimaticnicheevolutionmorphologicalevolutionandecologicallimitsinsalamanders |