Cargando…
Accuracy of automated classification of major depressive disorder as a function of symptom severity
BACKGROUND: Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-...
Autores principales: | Ramasubbu, Rajamannar, Brown, Matthew R.G., Cortese, Filmeno, Gaxiola, Ismael, Goodyear, Bradley, Greenshaw, Andrew J., Dursun, Serdar M., Greiner, Russell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983635/ https://www.ncbi.nlm.nih.gov/pubmed/27551669 http://dx.doi.org/10.1016/j.nicl.2016.07.012 |
Ejemplares similares
-
Reduced Intrinsic Connectivity of Amygdala in Adults with Major Depressive Disorder
por: Ramasubbu, Rajamannar, et al.
Publicado: (2014) -
A Preliminary Study of the Influence of Age of Onset and Childhood Trauma on Cortical Thickness in Major Depressive Disorder
por: Jaworska, Natalia, et al.
Publicado: (2014) -
Methylphenidate modulates activity within cognitive neural networks of patients with post-stroke major depression: A placebo-controlled fMRI study
por: Ramasubbu, Rajamannar, et al.
Publicado: (2008) -
Using Machine Learning to Predict Remission in Patients With Major
Depressive Disorder Treated With Desvenlafaxine
por: Benoit, James R.A., et al.
Publicado: (2021) -
Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms
por: Gheiratmand, Mina, et al.
Publicado: (2017)