Cargando…

Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes

Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing...

Descripción completa

Detalles Bibliográficos
Autores principales: Miragoli, Michele, Sanchez-Alonso, Jose L., Bhargava, Anamika, Wright, Peter T., Sikkel, Markus, Schobesberger, Sophie, Diakonov, Ivan, Novak, Pavel, Castaldi, Alessandra, Cattaneo, Paola, Lyon, Alexander R., Lab, Max J., Gorelik, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983655/
https://www.ncbi.nlm.nih.gov/pubmed/26725114
http://dx.doi.org/10.1016/j.celrep.2015.12.014
_version_ 1782447931314405376
author Miragoli, Michele
Sanchez-Alonso, Jose L.
Bhargava, Anamika
Wright, Peter T.
Sikkel, Markus
Schobesberger, Sophie
Diakonov, Ivan
Novak, Pavel
Castaldi, Alessandra
Cattaneo, Paola
Lyon, Alexander R.
Lab, Max J.
Gorelik, Julia
author_facet Miragoli, Michele
Sanchez-Alonso, Jose L.
Bhargava, Anamika
Wright, Peter T.
Sikkel, Markus
Schobesberger, Sophie
Diakonov, Ivan
Novak, Pavel
Castaldi, Alessandra
Cattaneo, Paola
Lyon, Alexander R.
Lab, Max J.
Gorelik, Julia
author_sort Miragoli, Michele
collection PubMed
description Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.
format Online
Article
Text
id pubmed-4983655
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-49836552016-08-22 Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes Miragoli, Michele Sanchez-Alonso, Jose L. Bhargava, Anamika Wright, Peter T. Sikkel, Markus Schobesberger, Sophie Diakonov, Ivan Novak, Pavel Castaldi, Alessandra Cattaneo, Paola Lyon, Alexander R. Lab, Max J. Gorelik, Julia Cell Rep Article Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart. Cell Press 2015-12-24 /pmc/articles/PMC4983655/ /pubmed/26725114 http://dx.doi.org/10.1016/j.celrep.2015.12.014 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Miragoli, Michele
Sanchez-Alonso, Jose L.
Bhargava, Anamika
Wright, Peter T.
Sikkel, Markus
Schobesberger, Sophie
Diakonov, Ivan
Novak, Pavel
Castaldi, Alessandra
Cattaneo, Paola
Lyon, Alexander R.
Lab, Max J.
Gorelik, Julia
Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title_full Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title_fullStr Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title_full_unstemmed Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title_short Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes
title_sort microtubule-dependent mitochondria alignment regulates calcium release in response to nanomechanical stimulus in heart myocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983655/
https://www.ncbi.nlm.nih.gov/pubmed/26725114
http://dx.doi.org/10.1016/j.celrep.2015.12.014
work_keys_str_mv AT miragolimichele microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT sanchezalonsojosel microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT bhargavaanamika microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT wrightpetert microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT sikkelmarkus microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT schobesbergersophie microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT diakonovivan microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT novakpavel microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT castaldialessandra microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT cattaneopaola microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT lyonalexanderr microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT labmaxj microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes
AT gorelikjulia microtubuledependentmitochondriaalignmentregulatescalciumreleaseinresponsetonanomechanicalstimulusinheartmyocytes