Cargando…

Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadi, Hossein, Sepantafar, Mohammadmajid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pasteur Institute 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983673/
https://www.ncbi.nlm.nih.gov/pubmed/26979401
http://dx.doi.org/10.7508/ibj.2016.04.002
Descripción
Sumario:Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.