Cargando…
Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine
Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertigino...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983713/ https://www.ncbi.nlm.nih.gov/pubmed/27540345 |
_version_ | 1782447939856105472 |
---|---|
author | Abdel-Salam, Omar M.E. El-Sayed El-Shamarka, Marwa Salem, Neveen A. El-Mosallamy, Aliaa E.M.K. Sleem, Amany A. |
author_facet | Abdel-Salam, Omar M.E. El-Sayed El-Shamarka, Marwa Salem, Neveen A. El-Mosallamy, Aliaa E.M.K. Sleem, Amany A. |
author_sort | Abdel-Salam, Omar M.E. |
collection | PubMed |
description | Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice. |
format | Online Article Text |
id | pubmed-4983713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Leibniz Research Centre for Working Environment and Human Factors |
record_format | MEDLINE/PubMed |
spelling | pubmed-49837132016-08-18 Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine Abdel-Salam, Omar M.E. El-Sayed El-Shamarka, Marwa Salem, Neveen A. El-Mosallamy, Aliaa E.M.K. Sleem, Amany A. EXCLI J Original Article Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice. Leibniz Research Centre for Working Environment and Human Factors 2012-08-27 /pmc/articles/PMC4983713/ /pubmed/27540345 Text en Copyright © 2012 Abdel-Salam et al. http://www.excli.de/documents/assignment_of_rights.pdf This is an Open Access article distributed under the following Assignment of Rights http://www.excli.de/documents/assignment_of_rights.pdf. You are free to copy, distribute and transmit the work, provided the original author and source are credited. |
spellingShingle | Original Article Abdel-Salam, Omar M.E. El-Sayed El-Shamarka, Marwa Salem, Neveen A. El-Mosallamy, Aliaa E.M.K. Sleem, Amany A. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title | Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title_full | Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title_fullStr | Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title_full_unstemmed | Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title_short | Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
title_sort | amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983713/ https://www.ncbi.nlm.nih.gov/pubmed/27540345 |
work_keys_str_mv | AT abdelsalamomarme ameliorationofthehaloperidolinducedmemoryimpairmentandbrainoxidativestressbycinnarizine AT elsayedelshamarkamarwa ameliorationofthehaloperidolinducedmemoryimpairmentandbrainoxidativestressbycinnarizine AT salemneveena ameliorationofthehaloperidolinducedmemoryimpairmentandbrainoxidativestressbycinnarizine AT elmosallamyaliaaemk ameliorationofthehaloperidolinducedmemoryimpairmentandbrainoxidativestressbycinnarizine AT sleemamanya ameliorationofthehaloperidolinducedmemoryimpairmentandbrainoxidativestressbycinnarizine |