Cargando…

Variation of life‐history traits of the Asian corn borer, Ostrinia furnacalis in relation to temperature and geographical latitude

Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval an...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Liang, He, Hai‐Min, Huang, Li‐Li, Geng, Ting, Fu, Shu, Xue, Fang‐Sen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984492/
https://www.ncbi.nlm.nih.gov/pubmed/27551371
http://dx.doi.org/10.1002/ece3.2275
Descripción
Sumario:Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval and pupal times were significantly decreased with increasing rearing temperature, and growth rate was positively correlated with temperature. The relationship between body weight and rearing temperature in O. furnacalis did not follow the temperature–size rule (TSR); all populations exhibited the highest pupal and adult weights at high temperatures or intermediate temperatures. However, development time, growth rate, and body weight did not show a constant latitudinal gradient. Across all populations at each temperature, female were significantly bigger than males, showing a female‐biased sexual size dimorphism (SSD). Contrary to Rensch's rule, the SSD tended to increase with rising temperature. The subtropical GZ population exhibited the largest degree of dimorphism while the temperate LF exhibited the smallest. Male pupae lose significantly more weight at metamorphosis compared to females. The proportionate weight losses of different populations were significantly different. Adult longevity was significantly decreased with increasing temperature. Between sexes, all populations exhibit a rather female‐biased adult longevity. Finally, we discuss the adaptive significance of higher temperature‐inducing high body weight in the moth's life history and why the moth exhibits the reverse TSR.