Cargando…
Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen
In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at hi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984493/ https://www.ncbi.nlm.nih.gov/pubmed/27551372 http://dx.doi.org/10.1002/ece3.2198 |
_version_ | 1782447973353914368 |
---|---|
author | Tomback, Diana F. Blakeslee, Sarah C. Wagner, Aaron C. Wunder, Michael B. Resler, Lynn M. Pyatt, Jill C. Diaz, Soledad |
author_facet | Tomback, Diana F. Blakeslee, Sarah C. Wagner, Aaron C. Wunder, Michael B. Resler, Lynn M. Pyatt, Jill C. Diaz, Soledad |
author_sort | Tomback, Diana F. |
collection | PubMed |
description | In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at higher frequencies than other conifers – that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life‐history stages for leeward conifers, but it is not known which life‐history stages are influenced and protection provided. However, P. albicaulis mortality from the non‐native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant–plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life‐history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms. |
format | Online Article Text |
id | pubmed-4984493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49844932016-08-22 Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen Tomback, Diana F. Blakeslee, Sarah C. Wagner, Aaron C. Wunder, Michael B. Resler, Lynn M. Pyatt, Jill C. Diaz, Soledad Ecol Evol Original Research In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at higher frequencies than other conifers – that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life‐history stages for leeward conifers, but it is not known which life‐history stages are influenced and protection provided. However, P. albicaulis mortality from the non‐native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant–plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life‐history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms. John Wiley and Sons Inc. 2016-06-28 /pmc/articles/PMC4984493/ /pubmed/27551372 http://dx.doi.org/10.1002/ece3.2198 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Tomback, Diana F. Blakeslee, Sarah C. Wagner, Aaron C. Wunder, Michael B. Resler, Lynn M. Pyatt, Jill C. Diaz, Soledad Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title | Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title_full | Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title_fullStr | Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title_full_unstemmed | Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title_short | Whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
title_sort | whitebark pine facilitation at treeline: potential interactions for disruption by an invasive pathogen |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984493/ https://www.ncbi.nlm.nih.gov/pubmed/27551372 http://dx.doi.org/10.1002/ece3.2198 |
work_keys_str_mv | AT tombackdianaf whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT blakesleesarahc whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT wagneraaronc whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT wundermichaelb whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT reslerlynnm whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT pyattjillc whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen AT diazsoledad whitebarkpinefacilitationattreelinepotentialinteractionsfordisruptionbyaninvasivepathogen |