Cargando…

Orbitally paced phosphogenesis in Mediterranean shallow marine carbonates during the middle Miocene Monterey event

During the Oligo‐Miocene, major phases of phosphogenesis occurred in the Earth's oceans. However, most phosphate deposits represent condensed or allochthonous hemipelagic deposits, formed by complex physical and chemical enrichment processes, limiting their applicability for the study regarding...

Descripción completa

Detalles Bibliográficos
Autores principales: Auer, Gerald, Hauzenberger, Christoph A., Reuter, Markus, Piller, Werner E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984836/
https://www.ncbi.nlm.nih.gov/pubmed/27570497
http://dx.doi.org/10.1002/2016GC006299
Descripción
Sumario:During the Oligo‐Miocene, major phases of phosphogenesis occurred in the Earth's oceans. However, most phosphate deposits represent condensed or allochthonous hemipelagic deposits, formed by complex physical and chemical enrichment processes, limiting their applicability for the study regarding the temporal pacing of Miocene phosphogenesis. The Oligo‐Miocene Decontra section located on the Maiella Platform (central Apennines, Italy) is a widely continuous carbonate succession deposited in a mostly middle to outer neritic setting. Of particular interest are the well‐winnowed grain to packstones of the middle Miocene Bryozoan Limestone, where occurrences of authigenic phosphate grains coincide with the prominent carbon isotope excursion of the Monterey event. This unique setting allows the analysis of orbital forcing on phosphogenesis, within a bio, chemo, and cyclostratigraphically constrained age‐model. LA‐ICP‐MS analyses revealed a significant enrichment of uranium in the studied authigenic phosphates compared to the surrounding carbonates, allowing natural gamma‐radiation (GR) to be used as a qualitative proxy for autochthonous phosphate content. Time series analyses indicate a strong 405 kyr eccentricity forcing of GR in the Bryozoan Limestone. These results link maxima in the GR record and thus phosphate content to orbitally paced increases in the burial of organic carbon, particularly during the carbon isotope maxima of the Monterey event. Thus, phosphogenesis during the middle Miocene in the Mediterranean was controlled by the 405 kyr eccentricity and its influence on large‐scale paleoproductivity patterns. Rare earth element data were used as a tool to reconstruct the formation conditions of the investigated phosphates, indicating generally oxic formation conditions, which are consistent with microbially mediated phosphogenesis.