Cargando…
SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity
Knowledge of protein function is important for biological, medical and therapeutic studies, but many proteins are still unknown in function. There is a need for more improved functional prediction methods. Our SVM-Prot web-server employed a machine learning method for predicting protein functional f...
Autores principales: | Li, Ying Hong, Xu, Jing Yu, Tao, Lin, Li, Xiao Feng, Li, Shuang, Zeng, Xian, Chen, Shang Ying, Zhang, Peng, Qin, Chu, Zhang, Cheng, Chen, Zhe, Zhu, Feng, Chen, Yu Zong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985167/ https://www.ncbi.nlm.nih.gov/pubmed/27525735 http://dx.doi.org/10.1371/journal.pone.0155290 |
Ejemplares similares
-
FireProt: web server for automated design of thermostable proteins
por: Musil, Milos, et al.
Publicado: (2017) -
Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest
por: Liao, Zhijun, et al.
Publicado: (2016) -
LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST
por: Xie, Dan, et al.
Publicado: (2005) -
FireProt(ASR): A Web Server for Fully Automated Ancestral Sequence Reconstruction
por: Musil, Milos, et al.
Publicado: (2020) -
LassoProt: server to analyze biopolymers with lassos
por: Dabrowski-Tumanski, Pawel, et al.
Publicado: (2016)