Cargando…

Planned FDG PET-CT Scan in Follow-Up Detects Disease Progression in Patients With Locally Advanced NSCLC Receiving Curative Chemoradiotherapy Earlier Than Standard CT

The role of positron emission tomography-computed tomography (PET-CT) in surveillance of patients with nonsmall cell lung cancer (NSCLC) treated with curatively intended chemoradiotherapy remains controversial. However, conventional chest X-ray and computed tomography (CT) are of limited value in di...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Yi, Brink, Carsten, Schytte, Tine, Petersen, Henrik, Wu, Yi-long, Hansen, Olfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985411/
https://www.ncbi.nlm.nih.gov/pubmed/26512597
http://dx.doi.org/10.1097/MD.0000000000001863
Descripción
Sumario:The role of positron emission tomography-computed tomography (PET-CT) in surveillance of patients with nonsmall cell lung cancer (NSCLC) treated with curatively intended chemoradiotherapy remains controversial. However, conventional chest X-ray and computed tomography (CT) are of limited value in discriminating postradiotherapy changes from tumor relapse. The aim of this study was to evaluate the clinical value of PET-CT scan in the follow-up for patients with locally advanced (LA) NSCLC receiving concomitant chemoradiotherapy (CCRT). Between 2009 and 2013, eligible patients with stages IIB–IIIB NSCLC were enrolled in the clinical trial NARLAL and treated in Odense University Hospital (OUH). All patients had a PET-CT scan scheduled 9 months (PET-CT9) after the start of the radiation treatment in addition to standard follow-up (group A). Patients who presented with same clinical stage of NSCLC and received similar treatment, but outside protocol in OUH during this period were selected as control group (group B). Patients in group B were followed in a conventional way without PET-CT9. All patients were treated with induction chemotherapy followed by CCRT. Group A included 37 and group B 55 patients. The median follow-up was 16 months. Sixty-six (72%) patients were diagnosed with progression after treatment. At the time of tumor progression, patients in group A had better performance status (PS) than those in group B (P = 0.02). Because of death (2 patients), poor PS (3) or retreatment of relapse (9), only 23 patients had PET-CT9 in group A. Eleven (48%) patients were firstly diagnosed with progression by PET-CT9 without any clinical symptoms of progression. The median progression-free survival (PFS) was 8.8 months in group A and 12.5 months in group B (P = 0.04). Hazard function PFS showed that patients in group A had higher risk of relapse than in group B. Additional FDG PET-CT scan at 9 months in surveillance increases probability of early detection of disease progression in advanced NSCLC patients treated with curatively intended CCRT.