Cargando…
Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L.
Sesame (Sesamum indicum L.) is an important oilseed crop and has an indeterminate growth habit. Here we resequenced the genomes of the parents and 120 progeny of an F(2) population derived from crossing Yuzhi 11 (indeterminate, Dt) and Yuzhi DS899 (determinate, dt1), and constructed an ultra-dense S...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985745/ https://www.ncbi.nlm.nih.gov/pubmed/27527492 http://dx.doi.org/10.1038/srep31556 |
Sumario: | Sesame (Sesamum indicum L.) is an important oilseed crop and has an indeterminate growth habit. Here we resequenced the genomes of the parents and 120 progeny of an F(2) population derived from crossing Yuzhi 11 (indeterminate, Dt) and Yuzhi DS899 (determinate, dt1), and constructed an ultra-dense SNP map for sesame comprised of 3,041 bins including 30,193 SNPs in 13 linkage groups (LGs) with an average marker density of 0.10 cM. Results indicated that the same recessive gene controls the determinacy trait in dt1 and a second determinate line, dt2 (08TP092). The QDt1 locus for the determinacy trait was located in the 18.0 cM–19.2 cM interval of LG8. The target SNP, SiDt27-1, and the determinacy gene, DS899s00170.023 (named here as SiDt), were identified in Scaffold 00170 of the Yuzhi 11 reference genome, based on genetic mapping and genomic association analysis. Unlike the G397A SNP change in the dt1 genotype, the SiDt allele in dt2 line was lost from the genome. This example of map-based gene cloning in sesame provides proof-of-concept of the utility of ultra-dense SNP maps for accurate genome research in sesame. |
---|