Cargando…
Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning
Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can ‘learn’, it has been claimed that it is possible to develop tools...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986074/ https://www.ncbi.nlm.nih.gov/pubmed/27559213 http://dx.doi.org/10.1093/bjsw/bcv031 |
_version_ | 1782448143126757376 |
---|---|
author | Gillingham, Philip |
author_facet | Gillingham, Philip |
author_sort | Gillingham, Philip |
collection | PubMed |
description | Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can ‘learn’, it has been claimed that it is possible to develop tools that can predict which individual children within a population are most likely to be maltreated. The proposed benefit is that interventions can then be targeted to the most vulnerable children and their families to prevent maltreatment from occurring. As expertise in predictive modelling increases, the approach may also be applied in other areas of social work to predict and prevent adverse outcomes for vulnerable service users. In this article, a glimpse inside the ‘black box’ of predictive tools is provided to demonstrate how their development for use in social work may not be straightforward, given the nature of the data recorded about service users and service activity. The development of predictive risk modelling (PRM) in New Zealand is focused on as an example as it may be the first such tool to be applied as part of ongoing reforms to child protection services. |
format | Online Article Text |
id | pubmed-4986074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49860742016-08-22 Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning Gillingham, Philip Br J Soc Work Articles Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can ‘learn’, it has been claimed that it is possible to develop tools that can predict which individual children within a population are most likely to be maltreated. The proposed benefit is that interventions can then be targeted to the most vulnerable children and their families to prevent maltreatment from occurring. As expertise in predictive modelling increases, the approach may also be applied in other areas of social work to predict and prevent adverse outcomes for vulnerable service users. In this article, a glimpse inside the ‘black box’ of predictive tools is provided to demonstrate how their development for use in social work may not be straightforward, given the nature of the data recorded about service users and service activity. The development of predictive risk modelling (PRM) in New Zealand is focused on as an example as it may be the first such tool to be applied as part of ongoing reforms to child protection services. Oxford University Press 2016-06 2015-04-08 /pmc/articles/PMC4986074/ /pubmed/27559213 http://dx.doi.org/10.1093/bjsw/bcv031 Text en © The Author 2015. Published by Oxford University Press on behalf of The British Association of Social Workers. All rights reserved. |
spellingShingle | Articles Gillingham, Philip Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title | Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title_full | Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title_fullStr | Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title_full_unstemmed | Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title_short | Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the ‘Black Box’ of Machine Learning |
title_sort | predictive risk modelling to prevent child maltreatment and other adverse outcomes for service users: inside the ‘black box’ of machine learning |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986074/ https://www.ncbi.nlm.nih.gov/pubmed/27559213 http://dx.doi.org/10.1093/bjsw/bcv031 |
work_keys_str_mv | AT gillinghamphilip predictiveriskmodellingtopreventchildmaltreatmentandotheradverseoutcomesforserviceusersinsidetheblackboxofmachinelearning |