Cargando…
Identifying candidate drivers of drug response in heterogeneous cancer by mining high throughput genomics data
BACKGROUND: With advances in technologies, huge amounts of multiple types of high-throughput genomics data are available. These data have tremendous potential to identify new and clinically valuable biomarkers to guide the diagnosis, assessment of prognosis, and treatment of complex diseases, such a...
Autor principal: | Nabavi, Sheida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986197/ https://www.ncbi.nlm.nih.gov/pubmed/27526849 http://dx.doi.org/10.1186/s12864-016-2942-5 |
Ejemplares similares
-
InvBFM: finding genomic inversions from high-throughput sequence data based on feature mining
por: Wu, Zhongjia, et al.
Publicado: (2020) -
glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
por: Hutchins, Andrew Paul, et al.
Publicado: (2014) -
Noise cancellation using total variation for copy number variation detection
por: Zare, Fatima, et al.
Publicado: (2018) -
Detecting genomic deletions from high-throughput sequence data with unsupervised learning
por: Li, Xin, et al.
Publicado: (2023) -
Convolutional neural network for automated mass segmentation in mammography
por: Abdelhafiz, Dina, et al.
Publicado: (2020)