Cargando…

Sets of lengths in maximal orders in central simple algebras()

Let [Formula: see text] be a holomorphy ring in a global field K, and R a classical maximal [Formula: see text]-order in a central simple algebra over K. We study sets of lengths of factorizations of cancellative elements of R into atoms (irreducibles). In a large majority of cases there exists a tr...

Descripción completa

Detalles Bibliográficos
Autor principal: Smertnig, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986414/
https://www.ncbi.nlm.nih.gov/pubmed/27570256
http://dx.doi.org/10.1016/j.jalgebra.2013.05.016
Descripción
Sumario:Let [Formula: see text] be a holomorphy ring in a global field K, and R a classical maximal [Formula: see text]-order in a central simple algebra over K. We study sets of lengths of factorizations of cancellative elements of R into atoms (irreducibles). In a large majority of cases there exists a transfer homomorphism to a monoid of zero-sum sequences over a ray class group of [Formula: see text] , which implies that all the structural finiteness results for sets of lengths—valid for commutative Krull monoids with finite class group—hold also true for R. If [Formula: see text] is the ring of algebraic integers of a number field K, we prove that in the remaining cases no such transfer homomorphism can exist and that several invariants dealing with sets of lengths are infinite.