Cargando…
Electrochemical biosensors and nanobiosensors
Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Limited
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986461/ https://www.ncbi.nlm.nih.gov/pubmed/27365037 http://dx.doi.org/10.1042/EBC20150008 |
_version_ | 1782448204346818560 |
---|---|
author | Hammond, Jules L. Formisano, Nello Estrela, Pedro Carrara, Sandro Tkac, Jan |
author_facet | Hammond, Jules L. Formisano, Nello Estrela, Pedro Carrara, Sandro Tkac, Jan |
author_sort | Hammond, Jules L. |
collection | PubMed |
description | Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. |
format | Online Article Text |
id | pubmed-4986461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Portland Press Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-49864612016-08-29 Electrochemical biosensors and nanobiosensors Hammond, Jules L. Formisano, Nello Estrela, Pedro Carrara, Sandro Tkac, Jan Essays Biochem Article Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. Portland Press Limited 2016-06-30 2016-06-30 /pmc/articles/PMC4986461/ /pubmed/27365037 http://dx.doi.org/10.1042/EBC20150008 Text en © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society |
spellingShingle | Article Hammond, Jules L. Formisano, Nello Estrela, Pedro Carrara, Sandro Tkac, Jan Electrochemical biosensors and nanobiosensors |
title | Electrochemical biosensors and nanobiosensors |
title_full | Electrochemical biosensors and nanobiosensors |
title_fullStr | Electrochemical biosensors and nanobiosensors |
title_full_unstemmed | Electrochemical biosensors and nanobiosensors |
title_short | Electrochemical biosensors and nanobiosensors |
title_sort | electrochemical biosensors and nanobiosensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986461/ https://www.ncbi.nlm.nih.gov/pubmed/27365037 http://dx.doi.org/10.1042/EBC20150008 |
work_keys_str_mv | AT hammondjulesl electrochemicalbiosensorsandnanobiosensors AT formisanonello electrochemicalbiosensorsandnanobiosensors AT estrelapedro electrochemicalbiosensorsandnanobiosensors AT carrarasandro electrochemicalbiosensorsandnanobiosensors AT tkacjan electrochemicalbiosensorsandnanobiosensors |