Cargando…
Identification and modelling of fast and slow I (h) current components in vestibular ganglion neurons
Previous experimental data indicates the hyperpolarization‐activated cation (I (h)) current, in the inner ear, consists of two components [different hyperpolarization‐activated cyclic nucleotide‐gated (HCN) subunits] which are impossible to pharmacologically isolate. To confirm the presence of these...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986932/ https://www.ncbi.nlm.nih.gov/pubmed/26174408 http://dx.doi.org/10.1111/ejn.13021 |
Sumario: | Previous experimental data indicates the hyperpolarization‐activated cation (I (h)) current, in the inner ear, consists of two components [different hyperpolarization‐activated cyclic nucleotide‐gated (HCN) subunits] which are impossible to pharmacologically isolate. To confirm the presence of these two components in vestibular ganglion neurons we have applied a parameter identification algorithm which is able to discriminate the parameters of the two components from experimental data. Using simulated data we have shown that this algorithm is able to identify the parameters of two populations of non‐inactivated ionic channels more accurately than a classical method. Moreover, the algorithm was demonstrated to be insensitive to the key parameter variations. We then applied this algorithm to I (h) current recordings from mouse vestibular ganglion neurons. The algorithm revealed the presence of a high‐voltage‐activated slow component and a low‐voltage‐activated fast component. Finally, the electrophysiological significance of these two I (h) components was tested individually in computational vestibular ganglion neuron models (sustained and transient), in the control case and in the presence of cAMP, an intracellular cyclic nucleotide that modulates HCN channel activity. The results suggest that, first, the fast and slow components modulate differently the action potential excitability and the excitatory postsynaptic potentials in both sustained and transient vestibular neurons and, second, the fast and slow components, in the control case, provide different information about characteristics of the stimulation and this information is significantly modified after modulation by cAMP. |
---|