Cargando…
Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method
BACKGROUND: Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibilit...
Autores principales: | Veta, Mitko, van Diest, Paul J., Jiwa, Mehdi, Al-Janabi, Shaimaa, Pluim, Josien P. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987048/ https://www.ncbi.nlm.nih.gov/pubmed/27529701 http://dx.doi.org/10.1371/journal.pone.0161286 |
Ejemplares similares
-
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Learning Domain-Invariant Representations of Histological Images
por: Lafarge, Maxime W., et al.
Publicado: (2019) -
Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks
por: Heslinga, Friso G., et al.
Publicado: (2020) -
Deep learning-based grading of ductal carcinoma in situ in breast histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2021) -
Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2022)