Cargando…

Carleman linearization and normal forms for differential systems with quasi-periodic coefficients

We study the matrix representation of Poincaré normalization using the Carleman linearization technique for non-autonomous differential systems with quasi-periodic coefficients. We provide a rigorous proof of the validity of the matrix representation of the normalization and obtain a recursive algor...

Descripción completa

Detalles Bibliográficos
Autor principal: Chermnykh, Sergey V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987760/
https://www.ncbi.nlm.nih.gov/pubmed/27588240
http://dx.doi.org/10.1186/s40064-016-3015-6
Descripción
Sumario:We study the matrix representation of Poincaré normalization using the Carleman linearization technique for non-autonomous differential systems with quasi-periodic coefficients. We provide a rigorous proof of the validity of the matrix representation of the normalization and obtain a recursive algorithm for computing the normalizing transformation and the normal form of the differential systems. The algorithm provides explicit formulas for the coefficients of the normal form and the corresponding transformation.