Cargando…
A characterization of nonemptiness and boundedness of the solution set for set-valued vector equilibrium problems via scalarization and stability results
In this paper, the existence theorems of solutions for generalized weak vector equilibrium problems are developed in real reflexive Banach spaces. Based on recession method and scalarization technique, we derive a characterization of nonemptiness and boundedness of solution set for generalized weak...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987761/ https://www.ncbi.nlm.nih.gov/pubmed/27588238 http://dx.doi.org/10.1186/s40064-016-3001-z |
Sumario: | In this paper, the existence theorems of solutions for generalized weak vector equilibrium problems are developed in real reflexive Banach spaces. Based on recession method and scalarization technique, we derive a characterization of nonemptiness and boundedness of solution set for generalized weak vector equilibrium problems. Moreover, Painlevé–Kuratowski upper convergence of solution set is also discussed as an application, when both the objective mapping and the constraint set are perturbed by difference parameters. |
---|