Cargando…
Machine learning, statistical learning and the future of biological research in psychiatry
Psychiatric research has entered the age of ‘Big Data’. Datasets now routinely involve thousands of heterogeneous variables, including clinical, neuroimaging, genomic, proteomic, transcriptomic and other ‘omic’ measures. The analysis of these datasets is challenging, especially when the number of me...
Autores principales: | Iniesta, R., Stahl, D., McGuffin, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988262/ https://www.ncbi.nlm.nih.gov/pubmed/27406289 http://dx.doi.org/10.1017/S0033291716001367 |
Ejemplares similares
-
Recommendations and future directions for supervised machine learning in psychiatry
por: Cearns, Micah, et al.
Publicado: (2019) -
Modern views of machine learning for precision psychiatry
por: Chen, Zhe Sage, et al.
Publicado: (2022) -
Ethical dilemmas posed by mobile health and machine learning in psychiatry research
por: Jacobson, Nicholas C, et al.
Publicado: (2020) -
Ethical considerations in the use of Machine Learning for research and statistics.
por: Toms, Alice, et al.
Publicado: (2022) -
Advanced machine learning methods in psychiatry: an introduction
por: Wu, Tsung-Chin, et al.
Publicado: (2020)