Cargando…

Potentials of single‐cell biology in identification and validation of disease biomarkers

Single‐cell biology is considered a new approach to identify and validate disease‐specific biomarkers. However, the concern raised by clinicians is how to apply single‐cell measurements for clinical practice, translate the message of single‐cell systems biology into clinical phenotype or explain alt...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Furong, Wang, Diane C., Lu, Jiapei, Wu, Wei, Wang, Xiangdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988278/
https://www.ncbi.nlm.nih.gov/pubmed/27113384
http://dx.doi.org/10.1111/jcmm.12868
Descripción
Sumario:Single‐cell biology is considered a new approach to identify and validate disease‐specific biomarkers. However, the concern raised by clinicians is how to apply single‐cell measurements for clinical practice, translate the message of single‐cell systems biology into clinical phenotype or explain alterations of single‐cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single‐cell gene sequencing in the identification and development of disease‐specific biomarkers, the definition and significance of single‐cell biology and single‐cell systems biology in the understanding of single‐cell full picture, the development and establishment of whole‐cell models in the validation of targeted biological function and the figure and meaning of single‐molecule imaging in single cell to trace intra‐single‐cell molecule expression, signal, interaction and location. We headline the important role of single‐cell biology in the discovery and development of disease‐specific biomarkers with a special emphasis on understanding single‐cell biological functions, e.g. mechanical phenotypes, single‐cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi‐dimensional, multi‐layer, multi‐crossing and stereoscopic single‐cell biology definitely benefits the discovery and development of disease‐specific biomarkers.