Cargando…

Peptide translocation through the plasma membrane of human cells: Can oxidative stress be exploited to gain better intracellular access?

Cell-penetrating peptides (CPPs) enter cells primarily by escaping from endosomal compartments or by directly translocating across the plasma membrane. Due to their capability of permeating into the cytosolic space of the cell, CPPs are utilized for the delivery of cell-impermeable molecules. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ting-Yi, Pellois, Jean-Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988429/
https://www.ncbi.nlm.nih.gov/pubmed/27574543
http://dx.doi.org/10.1080/19420889.2016.1205771
Descripción
Sumario:Cell-penetrating peptides (CPPs) enter cells primarily by escaping from endosomal compartments or by directly translocating across the plasma membrane. Due to their capability of permeating into the cytosolic space of the cell, CPPs are utilized for the delivery of cell-impermeable molecules. However, the fundamental mechanisms and parameters associated with the penetration of CPPs and their cargos through the lipid bilayer have not been fully determined. This in turn has hampered their usage in biotechnological or therapeutic applications. We have recently reported that the cell penetration activity of poly-arginine CPPs (PACPPs) is dependent on the oxidation status of the plasma membrane of cells. Our data support a model where the positively-charged PACPP binds negatively-charged lipids exposed on the cell surface as a result of oxidative damage. The PACPP then crosses the membrane via formation of inverted micelles with these anionic lipids. This model provides a plausible explanation for the high variability in the cell delivery efficiency of a PACPP often observed in different settings. Notably, taking into account the current literature describing the effects of lipid oxidation, our data point to a highly complex and underappreciated interplay between PACPPs and oxidized membrane species. Overall, a better understanding of oxidation-dependent cell penetration might provide a fundamental basis for development of optimal cell permeable peptides (including cyclic peptides, stapled peptides, peptoids, etc…) and of robust delivery protocols.