Cargando…
Characterization of the flexibility of the peripheral stalk of prokaryotic rotary A‐ATPases by atomistic simulations
Rotary ATPases are involved in numerous physiological processes, with the three distinct types (F/A/V‐ATPases) sharing functional properties and structural features. The basic mechanism involves the counter rotation of two motors, a soluble ATP hydrolyzing/synthesizing domain and a membrane‐embedded...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988496/ https://www.ncbi.nlm.nih.gov/pubmed/27177595 http://dx.doi.org/10.1002/prot.25066 |
Sumario: | Rotary ATPases are involved in numerous physiological processes, with the three distinct types (F/A/V‐ATPases) sharing functional properties and structural features. The basic mechanism involves the counter rotation of two motors, a soluble ATP hydrolyzing/synthesizing domain and a membrane‐embedded ion pump connected through a central rotor axle and a stator complex. Within the A/V‐ATPase family conformational flexibility of the EG stators has been shown to accommodate catalytic cycling and is considered to be important to function. For the A‐ATPase three EG structures have been reported, thought to represent conformational states of the stator during different stages of rotary catalysis. Here we use long, detailed atomistic simulations to show that those structures are conformers explored through thermal fluctuations, but do not represent highly populated states of the EG stator in solution. We show that the coiled coil tail domain has a high persistence length (∼100 nm), but retains the ability to adapt to different conformational states through the presence of two hinge regions. Moreover, the stator network of the related V‐ATPase has been suggested to adapt to subunit interactions in the collar region in addition to the nucleotide occupancy of the catalytic domain. The MD simulations reported here, reinforce this observation showing that the EG stators have enough flexibility to adapt to significantly different structural re‐arrangements and accommodate structural changes in the catalytic domain whilst resisting the large torque generated by catalytic cycling. These results are important to understand the role the stators play in the rotary‐ATPase mechanism. Proteins 2016; 84:1203–1212. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. |
---|