Cargando…
An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.)
A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (Pistia stratiotes) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts – aerial and submerged – was explored with different proportions of gold (I...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988642/ https://www.ncbi.nlm.nih.gov/pubmed/27563461 http://dx.doi.org/10.1016/j.jare.2014.03.006 |
Sumario: | A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (Pistia stratiotes) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts – aerial and submerged – was explored with different proportions of gold (III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which occurred at ambient temperature and pressure and commenced soon after mixing the pistia extracts and gold (III) solutions, was tracked using UV–visible spectrophotometry. The electron micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentrations used in the synthesis, GNPs of either monodispersed spherical shape were formed or there was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated triangular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary and secondary amines associated with the polypeptide biomolecules could have been responsible for the reduction of the gold (III) ions to GNPs and their subsequent stabilization. |
---|