Cargando…
A Segmentation Method for Lung Parenchyma Image Sequences Based on Superpixels and a Self-Generating Neural Forest
BACKGROUND: Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow pr...
Autores principales: | Liao, Xiaolei, Zhao, Juanjuan, Jiao, Cheng, Lei, Lei, Qiang, Yan, Cui, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988714/ https://www.ncbi.nlm.nih.gov/pubmed/27532214 http://dx.doi.org/10.1371/journal.pone.0160556 |
Ejemplares similares
-
A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise
por: Zhang, Wei, et al.
Publicado: (2017) -
Pathological lung segmentation based on random forest combined with deep model and multi-scale superpixels
por: Liu, Caixia, et al.
Publicado: (2020) -
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019) -
Superpixel Segmentation Based on Anisotropic Edge Strength
por: Wang, Gang, et al.
Publicado: (2019) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022)