Cargando…

Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances

Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Levin, Rachel A., Beltran, Victor H., Hill, Ross, Kjelleberg, Staffan, McDougald, Diane, Steinberg, Peter D., van Oppen, Madeleine J. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989115/
https://www.ncbi.nlm.nih.gov/pubmed/27301593
http://dx.doi.org/10.1093/molbev/msw119
_version_ 1782448517884674048
author Levin, Rachel A.
Beltran, Victor H.
Hill, Ross
Kjelleberg, Staffan
McDougald, Diane
Steinberg, Peter D.
van Oppen, Madeleine J. H.
author_facet Levin, Rachel A.
Beltran, Victor H.
Hill, Ross
Kjelleberg, Staffan
McDougald, Diane
Steinberg, Peter D.
van Oppen, Madeleine J. H.
author_sort Levin, Rachel A.
collection PubMed
description Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching.
format Online
Article
Text
id pubmed-4989115
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-49891152016-08-19 Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances Levin, Rachel A. Beltran, Victor H. Hill, Ross Kjelleberg, Staffan McDougald, Diane Steinberg, Peter D. van Oppen, Madeleine J. H. Mol Biol Evol Fast Track Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching. Oxford University Press 2016-09 2016-06-14 /pmc/articles/PMC4989115/ /pubmed/27301593 http://dx.doi.org/10.1093/molbev/msw119 Text en © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Fast Track
Levin, Rachel A.
Beltran, Victor H.
Hill, Ross
Kjelleberg, Staffan
McDougald, Diane
Steinberg, Peter D.
van Oppen, Madeleine J. H.
Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title_full Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title_fullStr Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title_full_unstemmed Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title_short Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances
title_sort sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances
topic Fast Track
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989115/
https://www.ncbi.nlm.nih.gov/pubmed/27301593
http://dx.doi.org/10.1093/molbev/msw119
work_keys_str_mv AT levinrachela sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT beltranvictorh sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT hillross sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT kjellebergstaffan sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT mcdougalddiane sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT steinbergpeterd sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances
AT vanoppenmadeleinejh sexscavengersandchaperonestranscriptomesecretsofdivergentsymbiodiniumthermaltolerances