Cargando…

Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data

We have considered different estimation procedures for the unknown parameters of the extended exponential geometric distribution. We introduce different types of estimators such as the maximum likelihood, method of moments, modified moments, L-moments, ordinary and weighted least squares, percentile...

Descripción completa

Detalles Bibliográficos
Autores principales: Louzada, Francisco, Ramos, Pedro L., Perdoná, Gleici S. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989134/
https://www.ncbi.nlm.nih.gov/pubmed/27579052
http://dx.doi.org/10.1155/2016/8727951
_version_ 1782448520905621504
author Louzada, Francisco
Ramos, Pedro L.
Perdoná, Gleici S. C.
author_facet Louzada, Francisco
Ramos, Pedro L.
Perdoná, Gleici S. C.
author_sort Louzada, Francisco
collection PubMed
description We have considered different estimation procedures for the unknown parameters of the extended exponential geometric distribution. We introduce different types of estimators such as the maximum likelihood, method of moments, modified moments, L-moments, ordinary and weighted least squares, percentile, maximum product of spacings, and minimum distance estimators. The different estimators are compared by using extensive numerical simulations. We discovered that the maximum product of spacings estimator has the smallest mean square errors and mean relative estimates, nearest to one, for both parameters, proving to be the most efficient method compared to other methods. Combining these results with the good properties of the method such as consistency, asymptotic efficiency, normality, and invariance we conclude that the maximum product of spacings estimator is the best one for estimating the parameters of the extended exponential geometric distribution in comparison with its competitors. For the sake of illustration, we apply our proposed methodology in two important data sets, demonstrating that the EEG distribution is a simple alternative to be used for lifetime data.
format Online
Article
Text
id pubmed-4989134
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-49891342016-08-30 Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data Louzada, Francisco Ramos, Pedro L. Perdoná, Gleici S. C. Comput Math Methods Med Research Article We have considered different estimation procedures for the unknown parameters of the extended exponential geometric distribution. We introduce different types of estimators such as the maximum likelihood, method of moments, modified moments, L-moments, ordinary and weighted least squares, percentile, maximum product of spacings, and minimum distance estimators. The different estimators are compared by using extensive numerical simulations. We discovered that the maximum product of spacings estimator has the smallest mean square errors and mean relative estimates, nearest to one, for both parameters, proving to be the most efficient method compared to other methods. Combining these results with the good properties of the method such as consistency, asymptotic efficiency, normality, and invariance we conclude that the maximum product of spacings estimator is the best one for estimating the parameters of the extended exponential geometric distribution in comparison with its competitors. For the sake of illustration, we apply our proposed methodology in two important data sets, demonstrating that the EEG distribution is a simple alternative to be used for lifetime data. Hindawi Publishing Corporation 2016 2016-08-04 /pmc/articles/PMC4989134/ /pubmed/27579052 http://dx.doi.org/10.1155/2016/8727951 Text en Copyright © 2016 Francisco Louzada et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Louzada, Francisco
Ramos, Pedro L.
Perdoná, Gleici S. C.
Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title_full Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title_fullStr Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title_full_unstemmed Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title_short Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
title_sort different estimation procedures for the parameters of the extended exponential geometric distribution for medical data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989134/
https://www.ncbi.nlm.nih.gov/pubmed/27579052
http://dx.doi.org/10.1155/2016/8727951
work_keys_str_mv AT louzadafrancisco differentestimationproceduresfortheparametersoftheextendedexponentialgeometricdistributionformedicaldata
AT ramospedrol differentestimationproceduresfortheparametersoftheextendedexponentialgeometricdistributionformedicaldata
AT perdonagleicisc differentestimationproceduresfortheparametersoftheextendedexponentialgeometricdistributionformedicaldata