Cargando…

Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches...

Descripción completa

Detalles Bibliográficos
Autores principales: Opitz, Alexander, Falchier, Arnaud, Yan, Chao-Gan, Yeagle, Erin M., Linn, Gary S., Megevand, Pierre, Thielscher, Axel, Deborah A., Ross, Milham, Michael P., Mehta, Ashesh D., Schroeder, Charles E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989141/
https://www.ncbi.nlm.nih.gov/pubmed/27535462
http://dx.doi.org/10.1038/srep31236
_version_ 1782448522498408448
author Opitz, Alexander
Falchier, Arnaud
Yan, Chao-Gan
Yeagle, Erin M.
Linn, Gary S.
Megevand, Pierre
Thielscher, Axel
Deborah A., Ross
Milham, Michael P.
Mehta, Ashesh D.
Schroeder, Charles E.
author_facet Opitz, Alexander
Falchier, Arnaud
Yan, Chao-Gan
Yeagle, Erin M.
Linn, Gary S.
Megevand, Pierre
Thielscher, Axel
Deborah A., Ross
Milham, Michael P.
Mehta, Ashesh D.
Schroeder, Charles E.
author_sort Opitz, Alexander
collection PubMed
description Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG.
format Online
Article
Text
id pubmed-4989141
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49891412016-08-30 Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates Opitz, Alexander Falchier, Arnaud Yan, Chao-Gan Yeagle, Erin M. Linn, Gary S. Megevand, Pierre Thielscher, Axel Deborah A., Ross Milham, Michael P. Mehta, Ashesh D. Schroeder, Charles E. Sci Rep Article Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. Nature Publishing Group 2016-08-18 /pmc/articles/PMC4989141/ /pubmed/27535462 http://dx.doi.org/10.1038/srep31236 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Opitz, Alexander
Falchier, Arnaud
Yan, Chao-Gan
Yeagle, Erin M.
Linn, Gary S.
Megevand, Pierre
Thielscher, Axel
Deborah A., Ross
Milham, Michael P.
Mehta, Ashesh D.
Schroeder, Charles E.
Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title_full Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title_fullStr Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title_full_unstemmed Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title_short Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
title_sort spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989141/
https://www.ncbi.nlm.nih.gov/pubmed/27535462
http://dx.doi.org/10.1038/srep31236
work_keys_str_mv AT opitzalexander spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT falchierarnaud spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT yanchaogan spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT yeagleerinm spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT linngarys spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT megevandpierre spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT thielscheraxel spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT deborahaross spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT milhammichaelp spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT mehtaasheshd spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates
AT schroedercharlese spatiotemporalstructureofintracranialelectricfieldsinducedbytranscranialelectricstimulationinhumansandnonhumanprimates