Cargando…

Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode

Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a cond...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Paola, D. M., Kesaria, M., Makarovsky, O., Velichko, A., Eaves, L., Mori, N., Krier, A., Patanè, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989182/
https://www.ncbi.nlm.nih.gov/pubmed/27535896
http://dx.doi.org/10.1038/srep32039
_version_ 1782448531915669504
author Di Paola, D. M.
Kesaria, M.
Makarovsky, O.
Velichko, A.
Eaves, L.
Mori, N.
Krier, A.
Patanè, A.
author_facet Di Paola, D. M.
Kesaria, M.
Makarovsky, O.
Velichko, A.
Eaves, L.
Mori, N.
Krier, A.
Patanè, A.
author_sort Di Paola, D. M.
collection PubMed
description Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics.
format Online
Article
Text
id pubmed-4989182
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49891822016-08-30 Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode Di Paola, D. M. Kesaria, M. Makarovsky, O. Velichko, A. Eaves, L. Mori, N. Krier, A. Patanè, A. Sci Rep Article Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as “stepping stones” for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics. Nature Publishing Group 2016-08-18 /pmc/articles/PMC4989182/ /pubmed/27535896 http://dx.doi.org/10.1038/srep32039 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Di Paola, D. M.
Kesaria, M.
Makarovsky, O.
Velichko, A.
Eaves, L.
Mori, N.
Krier, A.
Patanè, A.
Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title_full Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title_fullStr Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title_full_unstemmed Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title_short Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode
title_sort resonant zener tunnelling via zero-dimensional states in a narrow gap diode
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989182/
https://www.ncbi.nlm.nih.gov/pubmed/27535896
http://dx.doi.org/10.1038/srep32039
work_keys_str_mv AT dipaoladm resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT kesariam resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT makarovskyo resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT velichkoa resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT eavesl resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT morin resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT kriera resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode
AT patanea resonantzenertunnellingviazerodimensionalstatesinanarrowgapdiode