Cargando…

A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions

BACKGROUND: One very important functional domain of proteins is the protein-protein interacting region (PPIR), which forms the binding interface between interacting polypeptide chains. Post-translational modifications (PTMs) that occur in the PPIR can either interfere with or facilitate the interact...

Descripción completa

Detalles Bibliográficos
Autores principales: Saethang, Thammakorn, Payne, D. Michael, Avihingsanon, Yingyos, Pisitkun, Trairak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989344/
https://www.ncbi.nlm.nih.gov/pubmed/27534850
http://dx.doi.org/10.1186/s12859-016-1165-8
Descripción
Sumario:BACKGROUND: One very important functional domain of proteins is the protein-protein interacting region (PPIR), which forms the binding interface between interacting polypeptide chains. Post-translational modifications (PTMs) that occur in the PPIR can either interfere with or facilitate the interaction between proteins. The ability to predict whether sites of protein modifications are inside or outside of PPIRs would be useful in further elucidating the regulatory mechanisms by which modifications of specific proteins regulate their cellular functions. RESULTS: Using two of the comprehensive databases for protein-protein interaction and protein modification site data (PDB and PhosphoSitePlus, respectively), we created new databases that map PTMs to their locations inside or outside of PPIRs. The mapped PTMs represented only 5 % of all known PTMs. Thus, in order to predict localization within or outside of PPIRs for the vast majority of PTMs, a machine learning strategy was used to generate predictive models from these mapped databases. For the three mapped PTM databases which had sufficient numbers of modification sites for generating models (acetylation, phosphorylation, and ubiquitylation), the resulting models yielded high overall predictive performance as judged by a combined performance score (CPS). Among the multiple properties of amino acids that were used in the classification tasks, hydrophobicity was found to contribute substantially to the performance of the final predictive models. Compared to the other classifiers we also evaluated, the SVM provided the best performance overall. CONCLUSIONS: These models are the first to predict whether PTMs are located inside or outside of PPIRs, as demonstrated by their high predictive performance. The models and data presented here should be useful in prioritizing both known and newly identified PTMs for further studies to determine the functional relationship between specific PTMs and protein-protein interactions. The implemented R package is available online (http://sysbio.chula.ac.th/PtmPPIR). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1165-8) contains supplementary material, which is available to authorized users.