Cargando…
Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas
Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bed...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989465/ https://www.ncbi.nlm.nih.gov/pubmed/26332240 http://dx.doi.org/10.1111/risa.12471 |
_version_ | 1782448577276018688 |
---|---|
author | Bedford, Tim Daneshkhah, Alireza Wilson, Kevin J. |
author_facet | Bedford, Tim Daneshkhah, Alireza Wilson, Kevin J. |
author_sort | Bedford, Tim |
collection | PubMed |
description | Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions that do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The article provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas that have such good levels of approximation. We extend previous approaches using vines by considering nonconstant conditional dependencies, which are particularly relevant in financial risk modeling. We discuss how such models may be quantified, in terms of expert judgment or by fitting data, and illustrate the approach by modeling two financial data sets. |
format | Online Article Text |
id | pubmed-4989465 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49894652016-09-01 Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas Bedford, Tim Daneshkhah, Alireza Wilson, Kevin J. Risk Anal Original Research Articles Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions that do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The article provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas that have such good levels of approximation. We extend previous approaches using vines by considering nonconstant conditional dependencies, which are particularly relevant in financial risk modeling. We discuss how such models may be quantified, in terms of expert judgment or by fitting data, and illustrate the approach by modeling two financial data sets. John Wiley and Sons Inc. 2015-09-02 2016-04 /pmc/articles/PMC4989465/ /pubmed/26332240 http://dx.doi.org/10.1111/risa.12471 Text en © 2015 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Articles Bedford, Tim Daneshkhah, Alireza Wilson, Kevin J. Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title | Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title_full | Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title_fullStr | Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title_full_unstemmed | Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title_short | Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas |
title_sort | approximate uncertainty modeling in risk analysis with vine copulas |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989465/ https://www.ncbi.nlm.nih.gov/pubmed/26332240 http://dx.doi.org/10.1111/risa.12471 |
work_keys_str_mv | AT bedfordtim approximateuncertaintymodelinginriskanalysiswithvinecopulas AT daneshkhahalireza approximateuncertaintymodelinginriskanalysiswithvinecopulas AT wilsonkevinj approximateuncertaintymodelinginriskanalysiswithvinecopulas |