Cargando…

Therapeutic Effect of Total Saponins from Dioscorea nipponica Makino on Gouty Arthritis Based on the NF-κB Signal Pathway: An In vitro Study

OBJECTIVE: Dioscorea nipponica Makino is one of the most common used traditional Chinese drugs which are used to treat gouty arthritis (GA). Nuclear factor-κB (NF-κB) pathway plays an important role during this process. In the present study, we investigated the effects of total saponins from D. nipp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qi, Liu, Shumin, Yua, Donghua, Zhang, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989800/
https://www.ncbi.nlm.nih.gov/pubmed/27601855
http://dx.doi.org/10.4103/0973-1296.186344
Descripción
Sumario:OBJECTIVE: Dioscorea nipponica Makino is one of the most common used traditional Chinese drugs which are used to treat gouty arthritis (GA). Nuclear factor-κB (NF-κB) pathway plays an important role during this process. In the present study, we investigated the effects of total saponins from D. nipponica Makino (TDN) on NF-κB pathway in interleukin-1β (IL-1β) induced fibroblast-like synoviocytes (FLS). MATERIALS AND METHODS: FLS were divided into three groups: Normal group, model group, which was given 10 μg/L IL-1β to induce the proliferation, and TDN group (10 μg/L IL-1β +100 μg/L TDN). 1 h, 24 h, 48 h, and 72 h after treating, immune fluorescence method was used to detect the cell location of NF-κB p65. Electrophoretic mobility shift assay was used to detect the activation of NF-κB p65. Western blot method was used to detect the protein expressions of NF-κB p65, IκBα, and p-IκBα. RESULTS: TDN could inhibit the activation and transfer of NF-κB p65. As time went on, the expression of NF-κB p65 in the cytoplasm was decreased while it was increased in the nucleus. The expression of p-IκBα was increased, whereas the expression of IκBα was not changed. TDN could regulate these abnormal expressions. CONCLUSION: TDN may treat GA by regulating NF-κB signal pathway. SUMMARY: TDN could inhibit the transfer of NF-κB p65. TDN could inhibit the activation of NF-κB p65. TDN could inhibit the expression of p-IκBa. Abbreviations used: TDN: Total saponins from Dioscorea nipponica Makino, GA: Gouty arthritis, FLS: Fibroblast-like synoviocytes, IL-1β: Interleukin-1 beta, IF: Immune fluorescence, EMSA: Electrophoretic mobility shift assay, WB: Western blot.