Cargando…

Integrated analysis of omics data using microRNA-target mRNA network and PPI network reveals regulation of Gnai1 function in the spinal cord of Ews/Ewsr1 KO mice

BACKGROUND: Multifunctional transcription factor (TF) gene EWS/EWSR1 is involved in various cellular processes such as transcription regulation, noncoding RNA regulation, splicing regulation, genotoxic stress response, and cancer generation. Role of a TF gene can be effectively studied by measuring...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chai-Jin, Ahn, Hongryul, Lee, Sean Bong, Shin, Jong-Yeon, Park, Woong-Yang, Kim, Jong-Il, Lee, Junghee, Ryu, Hoon, Kim, Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989891/
https://www.ncbi.nlm.nih.gov/pubmed/27534535
http://dx.doi.org/10.1186/s12920-016-0195-4
Descripción
Sumario:BACKGROUND: Multifunctional transcription factor (TF) gene EWS/EWSR1 is involved in various cellular processes such as transcription regulation, noncoding RNA regulation, splicing regulation, genotoxic stress response, and cancer generation. Role of a TF gene can be effectively studied by measuring genome-wide gene expression, i.e., transcriptome, in an animal model of Ews/Ewsr1 knockout (KO). However, when a TF gene has complex multi-functions, conventional approaches such as differentially expressed genes (DEGs) analysis are not successful to characterize the role of the EWS gene. In this regard, network-based analyses that consider associations among genes are the most promising approach. METHODS: Networks are constructed and used to show associations among biological entities at various levels, thus different networks represent association at different levels. Taken together, in this paper, we report contributions on both computational and biological sides. RESULTS: Contribution on the computational side is to develop a novel computational framework that combines miRNA-gene network and protein-protein interaction network information to characterize the multifunctional role of EWS gene. On the biological side, we report that EWS regulates G-protein, Gnai1, in the spinal cord of Ews/Ewsr1 KO mice using the two biological network integrated analysis method. Neighbor proteins of Gnai1, G-protein complex subunits Gnb1, Gnb2 and Gnb4 were also down-regulated at their gene expression level. Interestingly, up-regulated genes, such as Rgs1 and Rgs19, are linked to the inhibition of Gnai1 activities. We further verified the altered expression of Gnai1 by qRT-PCR in Ews/Ewsr1 KO mice. CONCLUSIONS: Our integrated analysis of miRNA-transcriptome network and PPI network combined with qRT-PCR verifies that Gnai1 function is impaired in the spinal cord of Ews/Ewsr1 KO mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12920-016-0195-4) contains supplementary material, which is available to authorized users.