Cargando…
An analysis of the structure of the compound biological effectiveness factor
This report is an analysis of the structure of the compound biological effectiveness (CBE) factor. The value of the CBE factor previously reported was revalued for the central nervous system, skin and lung. To describe the structure, the following terms are introduced: the vascular CBE (v-CBE), intr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990111/ https://www.ncbi.nlm.nih.gov/pubmed/27021218 http://dx.doi.org/10.1093/jrr/rrw022 |
_version_ | 1782448640275513344 |
---|---|
author | Ono, Koji |
author_facet | Ono, Koji |
author_sort | Ono, Koji |
collection | PubMed |
description | This report is an analysis of the structure of the compound biological effectiveness (CBE) factor. The value of the CBE factor previously reported was revalued for the central nervous system, skin and lung. To describe the structure, the following terms are introduced: the vascular CBE (v-CBE), intraluminal CBE (il-CBE), extraluminal CBE (el-CBE) and non-vascular CBE (nv-CBE) factors and the geometric biological factor (GBF), i.e. the contributions that are derived from the total dose to the vasculature, each dose to vasculature from the intraluminal side and the extraluminal side, the dose to the non-vascular tissue and the factor to calculate el-CBE from il-CBE, respectively. The el-CBE factor element was also introduced to relate il-CBE to el-CBE factors. A CBE factor of 0.36 for disodium mercaptoundecahydrododecaborate (BSH) for the CNS was independent of the (10)B level in the blood; however, that for p-Boron-L-phenylalanine (BPA) increased with the (10)B level ratio of the normal tissue to the blood (N/B). The CBE factor was expressed as follows: factor = 0.32 + N/B × 1.65. The factor of 0.32 at 0 of N/B was close to the CBE factor for BSH. GBFs had similar values, between BSH and BPA, 1.39 and 1.52, respectively. The structure of the CBE factor for BPA to the lung was also elucidated based on this idea. The factor is described as follows: CBE factor = 0.32 + N/B × 1.80. By this elucidation of the structure of the CBE factor, it is expected that basic and clinical research into boron neutron capture therapy will progress. |
format | Online Article Text |
id | pubmed-4990111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49901112016-08-19 An analysis of the structure of the compound biological effectiveness factor Ono, Koji J Radiat Res Supplement - ICRR highlight This report is an analysis of the structure of the compound biological effectiveness (CBE) factor. The value of the CBE factor previously reported was revalued for the central nervous system, skin and lung. To describe the structure, the following terms are introduced: the vascular CBE (v-CBE), intraluminal CBE (il-CBE), extraluminal CBE (el-CBE) and non-vascular CBE (nv-CBE) factors and the geometric biological factor (GBF), i.e. the contributions that are derived from the total dose to the vasculature, each dose to vasculature from the intraluminal side and the extraluminal side, the dose to the non-vascular tissue and the factor to calculate el-CBE from il-CBE, respectively. The el-CBE factor element was also introduced to relate il-CBE to el-CBE factors. A CBE factor of 0.36 for disodium mercaptoundecahydrododecaborate (BSH) for the CNS was independent of the (10)B level in the blood; however, that for p-Boron-L-phenylalanine (BPA) increased with the (10)B level ratio of the normal tissue to the blood (N/B). The CBE factor was expressed as follows: factor = 0.32 + N/B × 1.65. The factor of 0.32 at 0 of N/B was close to the CBE factor for BSH. GBFs had similar values, between BSH and BPA, 1.39 and 1.52, respectively. The structure of the CBE factor for BPA to the lung was also elucidated based on this idea. The factor is described as follows: CBE factor = 0.32 + N/B × 1.80. By this elucidation of the structure of the CBE factor, it is expected that basic and clinical research into boron neutron capture therapy will progress. Oxford University Press 2016-08 2016-08-16 /pmc/articles/PMC4990111/ /pubmed/27021218 http://dx.doi.org/10.1093/jrr/rrw022 Text en © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Supplement - ICRR highlight Ono, Koji An analysis of the structure of the compound biological effectiveness factor |
title | An analysis of the structure of the compound biological effectiveness factor |
title_full | An analysis of the structure of the compound biological effectiveness factor |
title_fullStr | An analysis of the structure of the compound biological effectiveness factor |
title_full_unstemmed | An analysis of the structure of the compound biological effectiveness factor |
title_short | An analysis of the structure of the compound biological effectiveness factor |
title_sort | analysis of the structure of the compound biological effectiveness factor |
topic | Supplement - ICRR highlight |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990111/ https://www.ncbi.nlm.nih.gov/pubmed/27021218 http://dx.doi.org/10.1093/jrr/rrw022 |
work_keys_str_mv | AT onokoji ananalysisofthestructureofthecompoundbiologicaleffectivenessfactor AT onokoji analysisofthestructureofthecompoundbiologicaleffectivenessfactor |