Cargando…

SAR11 bacteria linked to ocean anoxia and nitrogen loss

Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsementzi, Despina, Wu, Jieying, Deutsch, Samuel, Nath, Sangeeta, Rodriguez-R, Luis M, Burns, Andrew S., Ranjan, Piyush, Sarode, Neha, Malmstrom, Rex R., Padilla, Cory C., Stone, Benjamin K., Bristow, Laura A., Larsen, Morten, Glass, Jennifer B., Thamdrup, Bo, Woyke, Tanja, Konstantinidis, Konstantinos T., Stewart, Frank J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990128/
https://www.ncbi.nlm.nih.gov/pubmed/27487207
http://dx.doi.org/10.1038/nature19068
_version_ 1782448643700162560
author Tsementzi, Despina
Wu, Jieying
Deutsch, Samuel
Nath, Sangeeta
Rodriguez-R, Luis M
Burns, Andrew S.
Ranjan, Piyush
Sarode, Neha
Malmstrom, Rex R.
Padilla, Cory C.
Stone, Benjamin K.
Bristow, Laura A.
Larsen, Morten
Glass, Jennifer B.
Thamdrup, Bo
Woyke, Tanja
Konstantinidis, Konstantinos T.
Stewart, Frank J.
author_facet Tsementzi, Despina
Wu, Jieying
Deutsch, Samuel
Nath, Sangeeta
Rodriguez-R, Luis M
Burns, Andrew S.
Ranjan, Piyush
Sarode, Neha
Malmstrom, Rex R.
Padilla, Cory C.
Stone, Benjamin K.
Bristow, Laura A.
Larsen, Morten
Glass, Jennifer B.
Thamdrup, Bo
Woyke, Tanja
Konstantinidis, Konstantinos T.
Stewart, Frank J.
author_sort Tsementzi, Despina
collection PubMed
description Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen to N(2) gas. Evidence for anaerobic metabolism in SAR11 has not yet been observed, and the question of how these bacteria contribute to OMZ biogeochemical cycling is unanswered. Here, we identify the metabolic basis for SAR11 activity in anoxic ocean waters. Genomic analysis of single cells from the world’s largest OMZ revealed diverse and previously uncharacterized SAR11 lineages that peak in abundance at anoxic depths, but are largely undetectable in oxygen-rich ocean regions. OMZ SAR11 contain adaptations to low oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalyzing the nitrite-producing first step of denitrification and constituted ~40% of all OMZ nar transcripts, with transcription peaking in the zone of maximum nitrate reduction rates. These results redefine the ecological niche of Earth’s most abundant organismal group and suggest an important contribution of SAR11 to nitrite production in OMZs, and thus to pathways of ocean nitrogen loss.
format Online
Article
Text
id pubmed-4990128
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-49901282017-02-11 SAR11 bacteria linked to ocean anoxia and nitrogen loss Tsementzi, Despina Wu, Jieying Deutsch, Samuel Nath, Sangeeta Rodriguez-R, Luis M Burns, Andrew S. Ranjan, Piyush Sarode, Neha Malmstrom, Rex R. Padilla, Cory C. Stone, Benjamin K. Bristow, Laura A. Larsen, Morten Glass, Jennifer B. Thamdrup, Bo Woyke, Tanja Konstantinidis, Konstantinos T. Stewart, Frank J. Nature Article Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen to N(2) gas. Evidence for anaerobic metabolism in SAR11 has not yet been observed, and the question of how these bacteria contribute to OMZ biogeochemical cycling is unanswered. Here, we identify the metabolic basis for SAR11 activity in anoxic ocean waters. Genomic analysis of single cells from the world’s largest OMZ revealed diverse and previously uncharacterized SAR11 lineages that peak in abundance at anoxic depths, but are largely undetectable in oxygen-rich ocean regions. OMZ SAR11 contain adaptations to low oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalyzing the nitrite-producing first step of denitrification and constituted ~40% of all OMZ nar transcripts, with transcription peaking in the zone of maximum nitrate reduction rates. These results redefine the ecological niche of Earth’s most abundant organismal group and suggest an important contribution of SAR11 to nitrite production in OMZs, and thus to pathways of ocean nitrogen loss. 2016-08-11 /pmc/articles/PMC4990128/ /pubmed/27487207 http://dx.doi.org/10.1038/nature19068 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Tsementzi, Despina
Wu, Jieying
Deutsch, Samuel
Nath, Sangeeta
Rodriguez-R, Luis M
Burns, Andrew S.
Ranjan, Piyush
Sarode, Neha
Malmstrom, Rex R.
Padilla, Cory C.
Stone, Benjamin K.
Bristow, Laura A.
Larsen, Morten
Glass, Jennifer B.
Thamdrup, Bo
Woyke, Tanja
Konstantinidis, Konstantinos T.
Stewart, Frank J.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
title SAR11 bacteria linked to ocean anoxia and nitrogen loss
title_full SAR11 bacteria linked to ocean anoxia and nitrogen loss
title_fullStr SAR11 bacteria linked to ocean anoxia and nitrogen loss
title_full_unstemmed SAR11 bacteria linked to ocean anoxia and nitrogen loss
title_short SAR11 bacteria linked to ocean anoxia and nitrogen loss
title_sort sar11 bacteria linked to ocean anoxia and nitrogen loss
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990128/
https://www.ncbi.nlm.nih.gov/pubmed/27487207
http://dx.doi.org/10.1038/nature19068
work_keys_str_mv AT tsementzidespina sar11bacterialinkedtooceananoxiaandnitrogenloss
AT wujieying sar11bacterialinkedtooceananoxiaandnitrogenloss
AT deutschsamuel sar11bacterialinkedtooceananoxiaandnitrogenloss
AT nathsangeeta sar11bacterialinkedtooceananoxiaandnitrogenloss
AT rodriguezrluism sar11bacterialinkedtooceananoxiaandnitrogenloss
AT burnsandrews sar11bacterialinkedtooceananoxiaandnitrogenloss
AT ranjanpiyush sar11bacterialinkedtooceananoxiaandnitrogenloss
AT sarodeneha sar11bacterialinkedtooceananoxiaandnitrogenloss
AT malmstromrexr sar11bacterialinkedtooceananoxiaandnitrogenloss
AT padillacoryc sar11bacterialinkedtooceananoxiaandnitrogenloss
AT stonebenjamink sar11bacterialinkedtooceananoxiaandnitrogenloss
AT bristowlauraa sar11bacterialinkedtooceananoxiaandnitrogenloss
AT larsenmorten sar11bacterialinkedtooceananoxiaandnitrogenloss
AT glassjenniferb sar11bacterialinkedtooceananoxiaandnitrogenloss
AT thamdrupbo sar11bacterialinkedtooceananoxiaandnitrogenloss
AT woyketanja sar11bacterialinkedtooceananoxiaandnitrogenloss
AT konstantinidiskonstantinost sar11bacterialinkedtooceananoxiaandnitrogenloss
AT stewartfrankj sar11bacterialinkedtooceananoxiaandnitrogenloss