Cargando…

Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Zi-Ying, Sun, Qian, Xia, Zhong-Yuan, Meng, Qing-Tao, Lei, Shao-Qing, Zhao, Bo, Tang, Ling-Hua, Xue, Rui, Chen, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990284/
https://www.ncbi.nlm.nih.gov/pubmed/27430285
http://dx.doi.org/10.3892/ijmm.2016.2680
Descripción
Sumario:Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG.