Cargando…
Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii
Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechani...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990392/ https://www.ncbi.nlm.nih.gov/pubmed/27574420 http://dx.doi.org/10.2147/IJN.S104166 |
Sumario: | Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604). Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 μg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. |
---|