Cargando…

Blocking transport resonances via Kondo many-body entanglement in quantum dots

Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer...

Descripción completa

Detalles Bibliográficos
Autores principales: Niklas, Michael, Smirnov, Sergey, Mantelli, Davide, Margańska, Magdalena, Nguyen, Ngoc-Viet, Wernsdorfer, Wolfgang, Cleuziou, Jean-Pierre, Grifoni, Milena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990698/
https://www.ncbi.nlm.nih.gov/pubmed/27526870
http://dx.doi.org/10.1038/ncomms12442
Descripción
Sumario:Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.