Cargando…

Blocking transport resonances via Kondo many-body entanglement in quantum dots

Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer...

Descripción completa

Detalles Bibliográficos
Autores principales: Niklas, Michael, Smirnov, Sergey, Mantelli, Davide, Margańska, Magdalena, Nguyen, Ngoc-Viet, Wernsdorfer, Wolfgang, Cleuziou, Jean-Pierre, Grifoni, Milena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990698/
https://www.ncbi.nlm.nih.gov/pubmed/27526870
http://dx.doi.org/10.1038/ncomms12442
_version_ 1782448734170251264
author Niklas, Michael
Smirnov, Sergey
Mantelli, Davide
Margańska, Magdalena
Nguyen, Ngoc-Viet
Wernsdorfer, Wolfgang
Cleuziou, Jean-Pierre
Grifoni, Milena
author_facet Niklas, Michael
Smirnov, Sergey
Mantelli, Davide
Margańska, Magdalena
Nguyen, Ngoc-Viet
Wernsdorfer, Wolfgang
Cleuziou, Jean-Pierre
Grifoni, Milena
author_sort Niklas, Michael
collection PubMed
description Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.
format Online
Article
Text
id pubmed-4990698
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49906982016-09-01 Blocking transport resonances via Kondo many-body entanglement in quantum dots Niklas, Michael Smirnov, Sergey Mantelli, Davide Margańska, Magdalena Nguyen, Ngoc-Viet Wernsdorfer, Wolfgang Cleuziou, Jean-Pierre Grifoni, Milena Nat Commun Article Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin. Nature Publishing Group 2016-08-16 /pmc/articles/PMC4990698/ /pubmed/27526870 http://dx.doi.org/10.1038/ncomms12442 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Niklas, Michael
Smirnov, Sergey
Mantelli, Davide
Margańska, Magdalena
Nguyen, Ngoc-Viet
Wernsdorfer, Wolfgang
Cleuziou, Jean-Pierre
Grifoni, Milena
Blocking transport resonances via Kondo many-body entanglement in quantum dots
title Blocking transport resonances via Kondo many-body entanglement in quantum dots
title_full Blocking transport resonances via Kondo many-body entanglement in quantum dots
title_fullStr Blocking transport resonances via Kondo many-body entanglement in quantum dots
title_full_unstemmed Blocking transport resonances via Kondo many-body entanglement in quantum dots
title_short Blocking transport resonances via Kondo many-body entanglement in quantum dots
title_sort blocking transport resonances via kondo many-body entanglement in quantum dots
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990698/
https://www.ncbi.nlm.nih.gov/pubmed/27526870
http://dx.doi.org/10.1038/ncomms12442
work_keys_str_mv AT niklasmichael blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT smirnovsergey blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT mantellidavide blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT marganskamagdalena blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT nguyenngocviet blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT wernsdorferwolfgang blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT cleuzioujeanpierre blockingtransportresonancesviakondomanybodyentanglementinquantumdots
AT grifonimilena blockingtransportresonancesviakondomanybodyentanglementinquantumdots