Cargando…
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
Lung cancer is the most prevalent cancer worldwide, and histopathological assessment is indispensable for its diagnosis. However, human evaluation of pathology slides cannot accurately predict patients' prognoses. In this study, we obtain 2,186 haematoxylin and eosin stained histopathology whol...
Autores principales: | Yu, Kun-Hsing, Zhang, Ce, Berry, Gerald J., Altman, Russ B., Ré, Christopher, Rubin, Daniel L., Snyder, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990706/ https://www.ncbi.nlm.nih.gov/pubmed/27527408 http://dx.doi.org/10.1038/ncomms12474 |
Ejemplares similares
-
Fully Mechanically Controlled Automated Electron Microscopic Tomography
por: Liu, Jinxin, et al.
Publicado: (2016) -
Towards a Fully Automated Scanning Probe Microscope for Biomedical Applications
por: Szeremeta, Witold K., et al.
Publicado: (2021) -
Fully automated real-time PCR for EGFR testing in non-small cell lung carcinoma
por: Colling, Richard, et al.
Publicado: (2018) -
Microscope image based fully automated stomata detection and pore measurement method for grapevines
por: Jayakody, Hiranya, et al.
Publicado: (2017) -
The Clinical and Pathological Features of Children With Microscopic Polyangiitis
por: Li, Qian, et al.
Publicado: (2021)