Cargando…
Model-based action planning involves cortico-cerebellar and basal ganglia networks
Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate...
Autores principales: | Fermin, Alan S. R., Yoshida, Takehiko, Yoshimoto, Junichiro, Ito, Makoto, Tanaka, Saori C., Doya, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990901/ https://www.ncbi.nlm.nih.gov/pubmed/27539554 http://dx.doi.org/10.1038/srep31378 |
Ejemplares similares
-
Neuronal Representation of a Working Memory-Based Decision Strategy in the Motor and Prefrontal Cortico-Basal Ganglia Loops
por: Yoshizawa, Tomohiko, et al.
Publicado: (2023) -
The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives
por: Milardi, Demetrio, et al.
Publicado: (2019) -
A full rat-scale model of the basal ganglia and thalamocortical network to reproduce Parkinsonian tremor
por: Moren, Jan, et al.
Publicado: (2015) -
Opponent Learning with Different Representations in the Cortico-Basal Ganglia Circuits
por: Morita, Kenji, et al.
Publicado: (2023) -
The mouse cortico–basal ganglia–thalamic network
por: Foster, Nicholas N., et al.
Publicado: (2021)