Cargando…
A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-syn...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990964/ https://www.ncbi.nlm.nih.gov/pubmed/27539144 http://dx.doi.org/10.1038/srep31510 |
_version_ | 1782448772569104384 |
---|---|
author | Lequeux, Steven Sampaio, Joao Cros, Vincent Yakushiji, Kay Fukushima, Akio Matsumoto, Rie Kubota, Hitoshi Yuasa, Shinji Grollier, Julie |
author_facet | Lequeux, Steven Sampaio, Joao Cros, Vincent Yakushiji, Kay Fukushima, Akio Matsumoto, Rie Kubota, Hitoshi Yuasa, Shinji Grollier, Julie |
author_sort | Lequeux, Steven |
collection | PubMed |
description | Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation. |
format | Online Article Text |
id | pubmed-4990964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49909642016-08-30 A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy Lequeux, Steven Sampaio, Joao Cros, Vincent Yakushiji, Kay Fukushima, Akio Matsumoto, Rie Kubota, Hitoshi Yuasa, Shinji Grollier, Julie Sci Rep Article Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation. Nature Publishing Group 2016-08-19 /pmc/articles/PMC4990964/ /pubmed/27539144 http://dx.doi.org/10.1038/srep31510 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Lequeux, Steven Sampaio, Joao Cros, Vincent Yakushiji, Kay Fukushima, Akio Matsumoto, Rie Kubota, Hitoshi Yuasa, Shinji Grollier, Julie A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title_full | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title_fullStr | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title_full_unstemmed | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title_short | A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
title_sort | magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990964/ https://www.ncbi.nlm.nih.gov/pubmed/27539144 http://dx.doi.org/10.1038/srep31510 |
work_keys_str_mv | AT lequeuxsteven amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT sampaiojoao amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT crosvincent amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT yakushijikay amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT fukushimaakio amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT matsumotorie amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT kubotahitoshi amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT yuasashinji amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT grollierjulie amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT lequeuxsteven magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT sampaiojoao magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT crosvincent magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT yakushijikay magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT fukushimaakio magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT matsumotorie magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT kubotahitoshi magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT yuasashinji magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy AT grollierjulie magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy |