Cargando…

A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy

Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Lequeux, Steven, Sampaio, Joao, Cros, Vincent, Yakushiji, Kay, Fukushima, Akio, Matsumoto, Rie, Kubota, Hitoshi, Yuasa, Shinji, Grollier, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990964/
https://www.ncbi.nlm.nih.gov/pubmed/27539144
http://dx.doi.org/10.1038/srep31510
_version_ 1782448772569104384
author Lequeux, Steven
Sampaio, Joao
Cros, Vincent
Yakushiji, Kay
Fukushima, Akio
Matsumoto, Rie
Kubota, Hitoshi
Yuasa, Shinji
Grollier, Julie
author_facet Lequeux, Steven
Sampaio, Joao
Cros, Vincent
Yakushiji, Kay
Fukushima, Akio
Matsumoto, Rie
Kubota, Hitoshi
Yuasa, Shinji
Grollier, Julie
author_sort Lequeux, Steven
collection PubMed
description Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation.
format Online
Article
Text
id pubmed-4990964
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49909642016-08-30 A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy Lequeux, Steven Sampaio, Joao Cros, Vincent Yakushiji, Kay Fukushima, Akio Matsumoto, Rie Kubota, Hitoshi Yuasa, Shinji Grollier, Julie Sci Rep Article Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation. Nature Publishing Group 2016-08-19 /pmc/articles/PMC4990964/ /pubmed/27539144 http://dx.doi.org/10.1038/srep31510 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lequeux, Steven
Sampaio, Joao
Cros, Vincent
Yakushiji, Kay
Fukushima, Akio
Matsumoto, Rie
Kubota, Hitoshi
Yuasa, Shinji
Grollier, Julie
A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title_full A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title_fullStr A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title_full_unstemmed A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title_short A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
title_sort magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990964/
https://www.ncbi.nlm.nih.gov/pubmed/27539144
http://dx.doi.org/10.1038/srep31510
work_keys_str_mv AT lequeuxsteven amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT sampaiojoao amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT crosvincent amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT yakushijikay amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT fukushimaakio amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT matsumotorie amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT kubotahitoshi amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT yuasashinji amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT grollierjulie amagneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT lequeuxsteven magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT sampaiojoao magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT crosvincent magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT yakushijikay magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT fukushimaakio magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT matsumotorie magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT kubotahitoshi magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT yuasashinji magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy
AT grollierjulie magneticsynapsemultilevelspintorquememristorwithperpendicularanisotropy