Cargando…
Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana
BACKGROUND: Previously, several long non-coding RNAs (lncRNAs) were characterized as regulators in phosphate (Pi) starvation responses. However, systematic studies of novel lncRNAs involved in the Pi starvation signaling pathways have not been reported. RESULTS: Here, we used a genome-wide sequencin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991007/ https://www.ncbi.nlm.nih.gov/pubmed/27538394 http://dx.doi.org/10.1186/s12864-016-2929-2 |
Sumario: | BACKGROUND: Previously, several long non-coding RNAs (lncRNAs) were characterized as regulators in phosphate (Pi) starvation responses. However, systematic studies of novel lncRNAs involved in the Pi starvation signaling pathways have not been reported. RESULTS: Here, we used a genome-wide sequencing and bioinformatics approach to identify both poly(A) + and poly(A)– lncRNAs that responded to Pi starvation in Arabidopsis thaliana. We sequenced shoot and root transcriptomes of the Arabidopsis seedlings grown under Pi-sufficient and Pi-deficient conditions, and predicted 1212 novel lncRNAs, of which 78 were poly(A)– lncRNAs. By employing strand-specific RNA libraries, we discovered many novel antisense lncRNAs for the first time. We further defined 309 lncRNAs that were differentially expressed between P+ and P– conditions in either shoots or roots. Through Gene Ontology enrichment of the associated protein-coding genes (co-expressed or close on the genome), we found that many lncRNAs were adjacent or co-expressed with the genes involved in several Pi starvation related processes, including cell wall organization and photosynthesis. In total, we identified 104 potential lncRNA targets of PHR1, a key regulator for transcriptional response to Pi starvation. Moreover, we identified 16 candidate lncRNAs as potential targets of miR399, another key regulator of plant Pi homeostasis. CONCLUSIONS: Altogether, our data provide a rich resource of candidate lncRNAs involved in the Pi starvation regulatory network. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2929-2) contains supplementary material, which is available to authorized users. |
---|