Cargando…

Homogenization of two fluid flow in porous media

The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Daly, K. R., Roose, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991259/
https://www.ncbi.nlm.nih.gov/pubmed/27547073
http://dx.doi.org/10.1098/rspa.2014.0564
Descripción
Sumario:The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties.