Cargando…

The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway

Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-ass...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhihui, Zhang, Haitao, Sun, Xiaohan, Ren, Lihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991747/
https://www.ncbi.nlm.nih.gov/pubmed/27484042
http://dx.doi.org/10.3892/mmr.2016.5563
_version_ 1782448903427194880
author Wang, Zhihui
Zhang, Haitao
Sun, Xiaohan
Ren, Lihong
author_facet Wang, Zhihui
Zhang, Haitao
Sun, Xiaohan
Ren, Lihong
author_sort Wang, Zhihui
collection PubMed
description Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia.
format Online
Article
Text
id pubmed-4991747
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-49917472016-08-26 The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway Wang, Zhihui Zhang, Haitao Sun, Xiaohan Ren, Lihong Mol Med Rep Articles Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia. D.A. Spandidos 2016-09 2016-07-27 /pmc/articles/PMC4991747/ /pubmed/27484042 http://dx.doi.org/10.3892/mmr.2016.5563 Text en Copyright: © Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Wang, Zhihui
Zhang, Haitao
Sun, Xiaohan
Ren, Lihong
The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title_full The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title_fullStr The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title_full_unstemmed The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title_short The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway
title_sort protective role of vitamin d3 in a murine model of asthma via the suppression of tgf-β/smad signaling and activation of the nrf2/ho-1 pathway
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991747/
https://www.ncbi.nlm.nih.gov/pubmed/27484042
http://dx.doi.org/10.3892/mmr.2016.5563
work_keys_str_mv AT wangzhihui theprotectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT zhanghaitao theprotectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT sunxiaohan theprotectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT renlihong theprotectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT wangzhihui protectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT zhanghaitao protectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT sunxiaohan protectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway
AT renlihong protectiveroleofvitamind3inamurinemodelofasthmaviathesuppressionoftgfbsmadsignalingandactivationofthenrf2ho1pathway