Cargando…
Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill
A motor cortex-based brain-computer interface (BCI) creates a novel real world output directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that involves recruitment of neural populations that are directly linked to BCI control as well as those that are not. The n...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991818/ https://www.ncbi.nlm.nih.gov/pubmed/27541829 http://dx.doi.org/10.1371/journal.pcbi.1004931 |
_version_ | 1782448911473967104 |
---|---|
author | Wander, Jeremiah D. Sarma, Devapratim Johnson, Lise A. Fetz, Eberhard E. Rao, Rajesh P. N. Ojemann, Jeffrey G. Darvas, Felix |
author_facet | Wander, Jeremiah D. Sarma, Devapratim Johnson, Lise A. Fetz, Eberhard E. Rao, Rajesh P. N. Ojemann, Jeffrey G. Darvas, Felix |
author_sort | Wander, Jeremiah D. |
collection | PubMed |
description | A motor cortex-based brain-computer interface (BCI) creates a novel real world output directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that involves recruitment of neural populations that are directly linked to BCI control as well as those that are not. The nature of interactions between these populations, however, remains largely unknown. Here, we employed a data-driven approach to assess the interaction between both local and remote cortical areas during the use of an electrocorticographic BCI, a method which allows direct sampling of cortical surface potentials. Comparing the area controlling the BCI with remote areas, we evaluated relationships between the amplitude envelopes of band limited powers as well as non-linear phase-phase interactions. We found amplitude-amplitude interactions in the high gamma (HG, 70–150 Hz) range that were primarily located in the posterior portion of the frontal lobe, near the controlling site, and non-linear phase-phase interactions involving multiple frequencies (cross-frequency coupling between 8–11 Hz and 70–90 Hz) taking place over larger cortical distances. Further, strength of the amplitude-amplitude interactions decreased with time, whereas the phase-phase interactions did not. These findings suggest multiple modes of cortical communication taking place during BCI use that are specialized for function and depend on interaction distance. |
format | Online Article Text |
id | pubmed-4991818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49918182016-09-12 Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill Wander, Jeremiah D. Sarma, Devapratim Johnson, Lise A. Fetz, Eberhard E. Rao, Rajesh P. N. Ojemann, Jeffrey G. Darvas, Felix PLoS Comput Biol Research Article A motor cortex-based brain-computer interface (BCI) creates a novel real world output directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that involves recruitment of neural populations that are directly linked to BCI control as well as those that are not. The nature of interactions between these populations, however, remains largely unknown. Here, we employed a data-driven approach to assess the interaction between both local and remote cortical areas during the use of an electrocorticographic BCI, a method which allows direct sampling of cortical surface potentials. Comparing the area controlling the BCI with remote areas, we evaluated relationships between the amplitude envelopes of band limited powers as well as non-linear phase-phase interactions. We found amplitude-amplitude interactions in the high gamma (HG, 70–150 Hz) range that were primarily located in the posterior portion of the frontal lobe, near the controlling site, and non-linear phase-phase interactions involving multiple frequencies (cross-frequency coupling between 8–11 Hz and 70–90 Hz) taking place over larger cortical distances. Further, strength of the amplitude-amplitude interactions decreased with time, whereas the phase-phase interactions did not. These findings suggest multiple modes of cortical communication taking place during BCI use that are specialized for function and depend on interaction distance. Public Library of Science 2016-08-19 /pmc/articles/PMC4991818/ /pubmed/27541829 http://dx.doi.org/10.1371/journal.pcbi.1004931 Text en © 2016 Wander et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wander, Jeremiah D. Sarma, Devapratim Johnson, Lise A. Fetz, Eberhard E. Rao, Rajesh P. N. Ojemann, Jeffrey G. Darvas, Felix Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title | Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title_full | Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title_fullStr | Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title_full_unstemmed | Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title_short | Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill |
title_sort | cortico-cortical interactions during acquisition and use of a neuroprosthetic skill |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991818/ https://www.ncbi.nlm.nih.gov/pubmed/27541829 http://dx.doi.org/10.1371/journal.pcbi.1004931 |
work_keys_str_mv | AT wanderjeremiahd corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT sarmadevapratim corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT johnsonlisea corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT fetzeberharde corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT raorajeshpn corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT ojemannjeffreyg corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill AT darvasfelix corticocorticalinteractionsduringacquisitionanduseofaneuroprostheticskill |