Cargando…
Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research
To increase our understanding of the genes involved in flowering in citrus, we performed genome resequencing of an early flowering trifoliate orange mutant (Poncirus trifoliata L. Raf.) and its wild type. At the genome level, 3,932,628 single nucleotide polymorphisms (SNPs), 1,293,383 insertion/dele...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991830/ https://www.ncbi.nlm.nih.gov/pubmed/27106267 http://dx.doi.org/10.1093/dnares/dsw017 |
_version_ | 1782448912608526336 |
---|---|
author | Zhang, Jin-Zhi Liu, Sheng-Rui Hu, Chun-Gen |
author_facet | Zhang, Jin-Zhi Liu, Sheng-Rui Hu, Chun-Gen |
author_sort | Zhang, Jin-Zhi |
collection | PubMed |
description | To increase our understanding of the genes involved in flowering in citrus, we performed genome resequencing of an early flowering trifoliate orange mutant (Poncirus trifoliata L. Raf.) and its wild type. At the genome level, 3,932,628 single nucleotide polymorphisms (SNPs), 1,293,383 insertion/deletion polymorphisms (InDels), and 52,135 structural variations were identified between the mutant and its wild type based on the citrus reference genome. Based on integrative analysis of resequencing and transcriptome analysis, 233,998 SNPs and 75,836 InDels were also identified between the mutant and its wild type at the transcriptional level. Also, 272 citrus homologous flowering-time transcripts containing genetic variation were also identified. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes annotation revealed that the transcripts containing the mutant- and the wild-type-specific InDel were involved in diverse biological processes and molecular function. Among these transcripts, there were 131 transcripts that were expressed differently in the two genotypes. When 268 selected InDels were tested on 32 genotypes of the three genera of Rutaceae for the genetic diversity assessment, these InDel-based markers showed high transferability. This work provides important information that will allow a better understanding of the citrus genome and that will be helpful for dissecting the genetic basis of important traits in citrus. |
format | Online Article Text |
id | pubmed-4991830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49918302016-08-22 Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research Zhang, Jin-Zhi Liu, Sheng-Rui Hu, Chun-Gen DNA Res Full Papers To increase our understanding of the genes involved in flowering in citrus, we performed genome resequencing of an early flowering trifoliate orange mutant (Poncirus trifoliata L. Raf.) and its wild type. At the genome level, 3,932,628 single nucleotide polymorphisms (SNPs), 1,293,383 insertion/deletion polymorphisms (InDels), and 52,135 structural variations were identified between the mutant and its wild type based on the citrus reference genome. Based on integrative analysis of resequencing and transcriptome analysis, 233,998 SNPs and 75,836 InDels were also identified between the mutant and its wild type at the transcriptional level. Also, 272 citrus homologous flowering-time transcripts containing genetic variation were also identified. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes annotation revealed that the transcripts containing the mutant- and the wild-type-specific InDel were involved in diverse biological processes and molecular function. Among these transcripts, there were 131 transcripts that were expressed differently in the two genotypes. When 268 selected InDels were tested on 32 genotypes of the three genera of Rutaceae for the genetic diversity assessment, these InDel-based markers showed high transferability. This work provides important information that will allow a better understanding of the citrus genome and that will be helpful for dissecting the genetic basis of important traits in citrus. Oxford University Press 2016-08 2016-04-21 /pmc/articles/PMC4991830/ /pubmed/27106267 http://dx.doi.org/10.1093/dnares/dsw017 Text en © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Full Papers Zhang, Jin-Zhi Liu, Sheng-Rui Hu, Chun-Gen Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title | Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title_full | Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title_fullStr | Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title_full_unstemmed | Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title_short | Identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
title_sort | identifying the genome-wide genetic variation between precocious trifoliate orange and its wild type and developing new markers for genetics research |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991830/ https://www.ncbi.nlm.nih.gov/pubmed/27106267 http://dx.doi.org/10.1093/dnares/dsw017 |
work_keys_str_mv | AT zhangjinzhi identifyingthegenomewidegeneticvariationbetweenprecocioustrifoliateorangeanditswildtypeanddevelopingnewmarkersforgeneticsresearch AT liushengrui identifyingthegenomewidegeneticvariationbetweenprecocioustrifoliateorangeanditswildtypeanddevelopingnewmarkersforgeneticsresearch AT huchungen identifyingthegenomewidegeneticvariationbetweenprecocioustrifoliateorangeanditswildtypeanddevelopingnewmarkersforgeneticsresearch |